Desarrollo de sistemas de fenotipado para evaluar diferentes estrategias de manejo de Diatraea saccharalis (Fabricius) en caña de azúcar

Autores

  • Florencia Budeguer Estación Experimental Agroindustrial Obispo Colombres (EEAOC). Sección Biotecnología.
  • M. Francisca Perera Estación Experimental Agroindustrial Obispo Colombres (EEAOC). Sección Biotecnología.
  • Gabriela Michavila Estación Experimental Agroindustrial Obispo Colombres (EEAOC). Sección Biotecnología.
  • Josefina Racedo Estación Experimental Agroindustrial Obispo Colombres (EEAOC). Sección Biotecnología.
  • Alejandro Vera Estación Experimental Agroindustrial Obispo Colombres (EEAOC). Sección Zoología.
  • Aldo S. Noguera Estación Experimental Agroindustrial Obispo Colombres (EEAOC). Sección Biotecnología.
  • M. Inés Cuenya Estación Experimental Agroindustrial Obispo Colombres (EEAOC). Sección Caña de Azúcar.
  • Atilio P. Castagnaro Instituto de Tecnología Agroindustrial del Noroeste Argentino (ITANOA).

Palavras-chave:

barrenador, condiciones controladas, estadio larval, método de infestación, síntoma de corazón muerto, dead heart symptom, controlled conditions, infestation method, larval instar, sugarcane borer

Resumo

          El barrenador de caña de azúcar Diatraea saccharalis (Fabricius) (Lepidoptera: Crambidae) es la plaga más importante del cultivo en Tucumán, Argentina. Los estadios larvales más avanzados perforan los tallos facilitando la colonización de microorganismos que reducen indirectamente el rendimiento y la calidad del azúcar. El objetivo del presente trabajo fue optimizar sistemas de fenotipado de D. saccharalis en caña de azúcar, en condiciones controladas, con el fin de evaluar diferentes estrategias de manejo de la plaga. En primer lugar, diferentes números de larvas neonatas fueron colocadas en el cogollo de plantines de caña de azúcar de dos meses de edad de las variedades TUC 95-10, TUC 03-12 y LCP 85-384. Por otro lado, en plantas individuales de seis meses de edad de TUC 95-10 se inocularon 10 larvas de diferentes estadios y se determinó el número de perforaciones y de vainas dañadas, la longitud total del túnel y el síntoma del corazón muerto. En ensayos in vitro se inocularon dos larvas neonatas en ápices caulinares extraídos de plantines y se determinó el porcentaje de supervivencia de larvas. Todos los ensayos se realizaron en condiciones controladas (28-30ºC; 50-70% de HR), con dos o tres repeticiones y con 5 - 10 unidades experimentales por tratamiento. En plantines se observó el síntoma del corazón muerto en todos los tratamientos con diferente número de larvas neonatas. Las plantas de seis meses de edad presentaron daños en vaina y tallo cuando se infestaron con los estadios larvales L2, L3 y L4, mientras que las larvas neonatas solo produjeron daño en la vaina. En los ensayos de laboratorio el porcentaje de supervivencia de larvas obtenido fue elevado. Los resultados sugieren que diferentes sistemas de fenotipado empleando material vegetal de distinta edad fueron optimizados y están disponibles para evaluar potenciales estrategias de manejo del barrenador.

ABSTRACT
Optimization of phenotyping system in sugarcane to evaluate different strategies against Diatraea saccharalis (Fabricius)

          Sugarcane borer Diatraea saccharalis (Fabricius) (Lepidoptera: Crambidae) is the most important sugarcane pest in Tucumán, Argentina. Older larvae bore into the stalks, facilitating microorganism colonization which indirectly reduces yield and quality of sugar. The aim of the present work was to optimize a sugarcane plant phenotyping method with D. saccharalis under controlled conditions to evaluate different strategies to manage the pest. Different numbers of neonate larvae were placed in the leaf whorl of sugarcane seedling (2-months-old) of cultivars TUC 95-10, TUC 03-12 and LCP 85-384. On the other hand, on single plants 6-month old of TUC 95-10, 10 larvae of several instars were added and the number of perforations and damaged sheath, the tunnel total length and the dead heart symptom were evaluated. In in vitro tests, immature leaf roll disks cut from seedlings were inoculated with two neonate larvae and the larval survival percentage was determined. Each assay was repeated twice or three times with 5 -10 replicates per treatment and conducted under controlled conditions (28-30ºC; 50-70% RH). In seedlings the symptom of the dead heart was observed in all the treatments with different larval number. In the case of the 6-month-old plants, damage in the sheath and stem were observed when infested with L2, L3 and L4 instars, whereas neonate larvae only produced sheath damage. In the laboratory tests, the survival percentage of larvae obtained was high. The results suggest that several methodologies were optimized to evaluate different types of plant material, which are available to study potential strategies for sugarcane borer management.

Biografia do Autor

Florencia Budeguer, Estación Experimental Agroindustrial Obispo Colombres (EEAOC). Sección Biotecnología.

Lic. Biot. Becaria de CONICET. Sección Biotecnología, EEAOC.

M. Francisca Perera, Estación Experimental Agroindustrial Obispo Colombres (EEAOC). Sección Biotecnología.

Dra. Lic. biot. Personal del CONICET. Sección Biotecnología, EEAOC.

Gabriela Michavila, Estación Experimental Agroindustrial Obispo Colombres (EEAOC). Sección Biotecnología.

Dra. Cs. Biol. Investigadora Asistente Conicet. Sección Biotecnología, EEAOC.

Josefina Racedo, Estación Experimental Agroindustrial Obispo Colombres (EEAOC). Sección Biotecnología.

Dra. Lic. Biot. Personal del CONICET. Sección Biotecnología, EEAOC.

Alejandro Vera, Estación Experimental Agroindustrial Obispo Colombres (EEAOC). Sección Zoología.

Técnico No Profesional Principiante B. Sección Zoología, EEAOC.

Aldo S. Noguera, Estación Experimental Agroindustrial Obispo Colombres (EEAOC). Sección Biotecnología.

Dr. Ing. Agr. Investigador Asociado B, Jefe de Sección. Sección Biotecnología, EEAOC.

M. Inés Cuenya, Estación Experimental Agroindustrial Obispo Colombres (EEAOC). Sección Caña de Azúcar.

Ing. Agr. Investigadora Principal. Jefe de Sección, Coord. Subprograma Mejoramiento de Caña de Azúcar. Sección Caña de Azúcar, EEAOC.

Atilio P. Castagnaro, Instituto de Tecnología Agroindustrial del Noroeste Argentino (ITANOA).

Dr. Ing. Agr. Director del Centro Científico Tecnológico CONICET NOA Sur. Instituto de Tecnología Agroindustrial del Noroeste Argentino (ITANOA).

Referências

Banegas, F. C.; R. J. Iovane; O. E. Alonso; N. Carro; J. Rojas; D. Pérez; M. G. Isas y M. L. P. Pérez. 2018. Intensidad de infestación y pérdidas de Diatraea saccharalis (Fabricius) (Lepidoptera: Crambidae) en la provincia de Tucumán en las cosechas 2016 y 2017. Revista Agronómica del Noroeste Argentino. ISBN/ISSN: 0080-2069. En prensa.

Bates, S. L.; Z. L. Zhao; R. T. Roush and A. M. Shelton. 2005. Insect resistance management in GM crops; past, present and future. Nat. Biotechnol. 23 (1): 57-62. doi: 10.1038/nbt1056.

Braga, D. P.; E. D. B. Arrigoni; M. C. Silva-Filho and E. C. Ulian. 2003. Expression of the Cry1Ab protein in genetically modified sugarcane for the control of Diatraea saccharalis (Lepidoptera: Crambidae). Journal of New Seeds 5: 209–221.

Bugdee, W. M. and W. P. Sappenfield. 1967. Varietal reaction of cotton after stem and root inoculation with Fusarium oxysporumf sp. vasinfectum. Phytopathology 58: 212–214.

Di Rienzo, J. A.; F. Casanoves; M. G. Balzarini; L. González; M. Tablada y C. Robledo. 2018. InfoStat versión 2018. Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina.

Fandos, C.; J. Scandaliaris; P. Scandaliaris; J. I. Carreras Baldrés y F. J. Soria. 2017. Área cosechable y producción de caña de azúcar para la zafra 2017. En: Tucumán en Reporte Agroindustrial. Relevamiento satelital de cultivos en la provincia de Tucumán. [En línea] Disponible en http://www.eeaoc.org.ar/upload/publicaciones/archivos/709/20170626161048000000.pdf

Flint, M. L. 2012. IPM in Practice: Principles and Methods of Integrated Pest Management. UCANR Publications, University of California Press, Oakland.

Fogliata, S. V.; M. I. Herrero; M. A. Vera; A. P. Castagnaro; G. Gastaminza and M. G. Murúa. 2019. Host plant or geographic barrier? Reproductive compatibility among Diatraea saccharalis populations from different host plant species and locations in argentina. Entomol. Exp. Appl. 167: 129-140.

Gao, S.; Y. Yang; C. Wang; J. Guo; D. Zhou; Q. Wu; Y. Su; L. Xu and Y. Que. 2016. Transgenic sugarcane with a cry1Ac gene exhibited better phenotypic traits and enhanced resistance against sugarcane borer. PloSOne 11 (4), e0153929.

Goebel, F. R. and N. Sallam. 2011. New pest threats for sugarcane in the new bioeconomy and how to manage them. Current Opinion in Environmental Sustainability 3: 81-89.

Goggin, F. L.; A. Lorence and C. N. Topp. 2015. Applying high-throughput phenotyping to plant–insect interactions: picturing more resistant crops. Current Opinion in Insect Science 9: 69-76.

Huang, F.; B. R. Leonard and R. H. Gable. 2006. Comparative susceptibility of European corn borer, southwestern corn borer, and sugarcane borer (Lepidoptera: Crambidae) to Cry1Ab protein in a commercial Bacillus thuringiensis corn hybrid. Journal of Economic Entomology 99: 194-202.

Humbert, R. P. 2013. The Growing of Sugar Cane. Elsevier, pp. 722.

Keeping, M. G. and J. H. Meyer. 2006. Silicon-mediated resistance of sugarcane to Eldana saccharina Walker (Lepidoptera: Pyralidae): effects of silicon source and cultivar. Journal of Applied Entomology 130: 410-420.

Long, W. H. and S. D. Hensley. 1972. Insect pests of sugar cane. Annual Review of Entomology 17: 149-176.

Macedo, N. and P. S. M. Botelho. 1988. Integrated pest management of sugarcane borer Diatraea saccharalis (Fabricius, 1794) (Lepidoptera, Pyralidae). Brasil Açucareiro 162: 2-11.

Mendonça, A. F.; J. A. Moreno; S. H. Risco and I.C.B. Rocha. 1996. As brocas da cana-de-açúcar. En: Mendonça, A. F. (ed.), Pragas da cana-de-açúcar. Insetos e Cia, Maceió, pp. 51-82.

Pan, Y. S. and S. D. Hensley. 1973. Evaluation of sugarcane seedlings for resistance to the sugarcane borer Diatraea saccharalis. Environmental Entomology 2: 149-154.

Parra, J. R. P. 1993. Controle das principais pragas da cana-de-açúcar. En: Câmara, G. M. S. e E. A. M. Oliveira (eds.), Produção de Cana de Açúcar FEALQ, Piracicaba, pp. 184–197.

Parra, J. R. P. and R. A. Zucchi. 2004. Trichogramma in Brazil: Feasibility of use after twenty years of research.Neotrop. Entomol. 33: 271-281.

Salvatore, A. R.; G. López y E. Willink. 2009. En: Romero, E. R.; P. A. Digonzelli y J. Scandaliaris (eds.), Manual del cañero, EEAOC, Las Talitas, Tucumán, R. Argentina. [En línea] Disponible en http://www.eeaoc.org.ar/cania/MC_C11.pdf

Selvi, C.; P. Sivasubramanian; S. M. Kumar; V. Udayasuriyan; D. Sudhakar and P. Balasubramanian. 2017. A high throughput bioassay system for screening of Bt transgenic plants expressing Cry proteins. Journal of Entomology and Zoology Studies 5: 398-405.

Sobhy, I. S.; M. Erb; Y. Lou and T. C. J. Turlings. 2014. The prospect of applying chemical elicitors and plant strengtheners to enhance the biological control of crop pests. Philosophical Transactions of the Royal Society B: Biological Sciences 369: 20120283.

Showler, A. T.; S. C. Cook and V. Abrigo. 2013. Transgenic Bt corn varietal resistance against the Mexican rice borer, Eoreuma loftini (Dyar) (Lepidoptera: Crambidae) and implications to sugarcane. Crop Protection 48: 57-62.

Srikanth, J.; N. Subramonian and M. Premachandran. 2011. Advances in transgenic research for insect resistance in sugarcane. Trop. Plant Biol. 4: 52-61. 10.1007/s12042-011-9077-2.

Stout, M. J.; G. W. Zehnder and M. E. BaurE. 2002. Potential for the use of elicitors of plant resistance in arthropod management programs. Archives of Insect Biochemistry and Physiology 51: 222-235.

Torres Ramírez, E. D. 2015. Tesis de grado. Licenciatura en Ciencias Agrícolas con énfasis en cultivos tropicales. Residualidad de productos químicos utilizados para el control de larvas del barrenador (Diatraea crambidoides, lepidóptera). Universidad Rafael Landívar. Facultad de Ciencias Ambientales y Agrícolas. Guatemala.

Tomaz, A. C. 2014. Genetic divergence and resistance of sugarcane genotypes to Diatraea saccharalis. Magister on Sciences. Federal University of Viçosa. Brazil. [En línea ] Disponible en http://www.locus.ufv.br/bitstream/handle/123456789/7746/texto%20completo.pdf?sequence=1 (consultado 26 april de 2019).

Tomaz, A. C.; A. E. Coutinho; B. O. Soares; L. A. Peternelli; E. J. G. Pereira and M. H. P. Barbosa. 2018. Assessing resistance of sugarcane varieties to sugarcane borer Diatraea saccharalis Fab. (Lepidoptera: Crambidae). Bulletin of Entomological Research 108: 547-555.

USDA. 2017a. Argentina Sugar Annual 2017. https://gain.fas.usda.gov/Recent%20GAIN%20Publications/Sugar%20Annual_Buenos%20Aires_Argentina_4-28-2017.pdf

USDA. 2017b. Sugar: World Markets and Trade. https://apps.fas.usda.gov/psdonline/circulars/Sugar.pdf

Wang, W. Z.; B. P. Yang; X. Y. Feng; Z. Y. Cao; C. L. Feng; J. G. Wang; G. R. Xiong; L. B. Shen; J. Zeng; T. T. Zhao and S. Z. Zhang. 2017. Development and characterization of transgenic sugarcane with insect resistance and herbicide tolerance. Frontiers in Plant Science 8: 1535.

Weng, L. X.; H. H. Deng; J. L. Xu; Q. Li; Y. Q. Zhang; Z. D. Jiang; Q. W. Li; J. W. Chen and L. H. Zhang. 2011. Transgenic sugarcane plants expressing high levels of modified cry1Ac provide effective control against stem borers in field trials. Transgenic Res. doi:10.1007/s11248-010-9456-8.

Publicado

22/01/2020

Como Citar

Budeguer, F., Perera, M. F., Michavila, G., Racedo, J., Vera, A., Noguera, A. S., Cuenya, M. I., & Castagnaro, A. P. (2020). Desarrollo de sistemas de fenotipado para evaluar diferentes estrategias de manejo de Diatraea saccharalis (Fabricius) en caña de azúcar. Revista Industrial Y Agrícola De Tucumán, 96(2), 15–22. Recuperado de https://publicaciones.eeaoc.gob.ar/index.php/riat/article/view/91

Edição

Seção

Artículos Científicos

Categorias

Artigos mais lidos pelo mesmo(s) autor(es)