Rol del xantano en la formación de biopelículas durante la vida epifítica de Xanthomonas citri subsp. citri y su relación con el desarrollo del cancro
Palavras-chave:
Citrus limon, exopolisacáridos, cancrosis, microscopía confocal de barrido láser, gen gumB, exopolysaccharides, citrus canker, confocal laser scanning microscopy, gumB geneResumo
La mayoría de las bacterias fitopatógenas viven de forma epifítica sobre las plantas antes de la colonización y sobreviven en la superficie del tejido del hospedante, mediante la formación de biopelículas. La capacidad para producir exopolisacáridos es crítica para la formación de las mismas en diversas bacterias. En este trabajo, se estudió la formación de biopelículas de X. citri subsp. citri, bacteria responsable de la cancrosis de los cítricos, y su relación con la supervivencia epifítica y el desarrollo del cancro sobre hojas de plantas de limonero. Mediante tinción con cristal violeta y análisis de microscopía confocal de barrido láser, se observó que X. citri subsp. citri forma estructuras de biopelículas sobre hojas de limonero. En contraste, una cepa mutante defectiva en la biosíntesis del exopolisacárido xantano, denominada X. citri subsp. citri gumB, fue incapaz de formar dichas estructuras y su supervivencia epifítica y capacidad de desarrollar la enfermedad en la planta se vieron comprometidas. Estos resultados sugieren que la formación de biopelículas tiene una importancia clave en la fase epifítica de X. citri subsp. citri antes y durante el desarrollo del cancro.
ABSTRACT
Role of xanthan in biofilm formation during Xanthomonas citri subsp. citri epiphytic life and its relationship to canker development
Almost all phytopathogenic bacteria have an epiphytic life before invading the host plant. These bacteria survive on the surface of the host tissue through biofilm formation. The ability to produce exopolysaccharides is critical for biofilm formation in several phytopathogenic bacteria. In this work, biofilm formation by Xanthomonas citri subsp. citri (bacterium responsible for citrus canker disease), and its relationship to epiphytic survival and canker development on lemon leaves were studied. Through crystal violet staining and confocal laser scanning microscopy analysis, it was observed that X. citri subsp. citri forms biofilm structures on lemon leaves. Furthermore, a X. citri subsp. citri gumB mutant strain, defective in production of exopolysaccharide xanthan, did not form a structured biofilm and showed reduced growth and survival on leaf surfaces, and reduced disease symptoms. These results suggest that biofilm formation has an important role in X. citri subsp. citri epiphytic survival prior to canker development.
Downloads
Referências
Branda, S. S.; S. Vik; L. Friedman and R. Kolter. 2005. Biofilms: the matrix revisited. Trends Microbiol. 13: 20-26.
Brunings, A. M. and D. W. Gabriel. 2003. Xanthomonas citri: breaking the surface. Mol. Plant Pathol. 4: 141-157.
Camilli, A. and B. L. Bassler. 2006. Bacterial smallmolecule signaling pathways. Science 311: 1113-1116.
Chen, W. P. and T. T. Kuo. 1993. A simple and rapid method for the preparation of gram-negative bacterial genomic DNA. Nucleic Acids Res. 21: 2260.
Chou, F. L.; H. C. Chou; Y. S. Lin; B. Y. Yang; N. T. Lin; S. F. Weng and Y. H. Tseng. 1997. The Xanthomonas campestris gumD gene required for synthesis of xanthan gum is involved in normal pigmentation and virulence in causing black rot. Biochem. Biophys. Res. Commun. 233 (1): 265-269.
Crossman, L. and J. M. Dow. 2004. Biofilm formation and dispersal in Xanthomonas campestris. Microbes Infect. 6: 623-629.
Cubero, J. and J. H. Graham. 2004. The leucineresponsive regulatory protein (lrp) gene for characterization of the relationship among Xanthomonas species. Int. J. Syst. Evol. Microbiol. 54(2): 429-437.
Da Silva, A. C.; J. A. Ferro; F. C. Reinach; C. S. Farah; L. R. Furlan; R. B. Quaggio; C. B. Monteiro-Vitorello; M. A. Van Sluys; N. F. Almeida; L. M. C. Alves; A. M. do Amara; M. C. Bertolini; L. E. A. Camargo; G. Camarotte; F. Cannavan; J. Cardozo; F. Chambergo; L. P. Ciapina; R. M. B. Cicarelli; L. L. Coutinho; J. R. Cursino-Santos; H. El- Dorry; J. B. Faria; A. J. S. Ferreira; R. C. C. Ferreira; M. I. T. Ferro; E. F. Formighieri; M. C. Franco; C. C. Greggio; A. Gruber; A. M. Katsuyama; L. T. Kishi; R. P. Leite; E. G. M. Lemos; M. V. F. Lemos; E. C. Locali; M. A. Machado; A. M. B. N. Madeira; N. M. Martinez- Rossi; E. C. Martins; J. Meidanis; C. F. M. Menck; C. Y. Miyaki; D. H. Moon; L. M. Moreira; M. T. M. Novo; V. K. Okura; M. C. Oliveira; V. R. Oliveira; H. A. Pereira; A. Rossi; J. A. D. Sena; C.Silva; R. F. de Souza; L. A F. Spinola; M. A. Takita; R. E. Tamura; E. C. Teixeira; R. I. D. Tezza; M. Trindade dos Santos; D. Truffi; S. M. Tsai; F. F. White; J. C. Setubal and J. P. Kitajima. 2002. Comparison of the genomes of two Xanthomonas pathogens with differing host specificities. Nature 417 (6887): 459-463.
Fujishige, N. A.; N. N. Kapadia; P. L. De Hoff and A. M. Hirsch. 2006. Investigations of Rhizobium biofilm formation. FEMS (Fed. Eur. Microbiol. Soc.) Microbiol. Ecol. 56 (2): 195-206.
Guilhabert, M. R.; L. M. Hoffman; D. A. Mills and B. C. Kirkpatrick. 2001. Transposon mutagenesis of Xylella fastidiosa by electroporation of Tn5 synaptic complexes. Mol. Plant-Microbe Interact. 14 (6): 701-706.
Hirano, S. S. and C. D. Upper. 1983. Ecology and epidemiology of foliar bacterial plant pathogens. Annu. Rev. Phytopathol. 21: 243-269.
Jansson, P. E.; L. Kenne and B. Lindberg. 1975. Structure of extracellular polysaccharide from Xanthomonas campestris. Carbohydr. Res. 45: 275-282.
Kemp, B. P.; J. Horne; A. Bryant and R. M. Cooper. 2004. Xanthomonas citri pv. manihotis gumD gene is essential for EPS production and pathogenicity and enhances epiphytic survival on cassava (Manihot esculente). Physiol. Mol. Plant Pathol. 64: 209-218.
Koutsoudis, M. D.; D. Tsaltas; T. D. Minogue and S. B. von Bodman. 2006. Quorum-sensing regulation governs bacterial adhesion, biofilm development, and host colonization in Pantoea stewartii subspecies stewartii. Proc. Natl. Acad. Sci. USA 103 (15): 5983-5988.
Laue, H.; A. Schenk; H. Li; L. Lambertsen; T. R. Neu; S. Molin and M. S. Ullrich. 2006. Contribution of alginate and levan production to biofilm formation by Pseudomonas syringae. Microbiology 152: 2909-2918.
Marco, M. L.; J. Legac and S. E. Lindow. 2005. Pseudomonas syringae genes induced during colonization of leaf surfaces. Environ. Microbiol. 7 (9):1379-1391.
Morris, C. E.; J. M. Monier and M. A. Jacques. 1998. A technique to quantify the population size and composition of the biofilm component in communities of bacteria in the phyllosphere. Appl. Environ. Microbiol. 64 (12):4789-4795.
Muller, P.; M. Keller; W. M. Weng; J. Quandt; W. Arnold and A. Puhler. 1993. Genetic analysis of the Rhizobium meliloti exoYFQ operon: ExoY is homologous to sugar transferases and ExoQ represents a transmembrane protein. Mol. Plant-Microbe Interact. 6 (1): 55-65.
Parsek, M. R. and C. Fuqua. 2004. Biofilms 2003: emerging themes and challenges in studies of surface-associated microbial life. J. Bacteriol. 186 (14): 4427-4440.
Parsek, M. R. and P. K. Singh. 2003. Bacterial biofilms: an emerging link to disease pathogenesis. Annu. Rev. Microbiol. 57: 677-701.
Qian, W.; Y. Jia; S. X. Ren; Y. Q. He; J. X. Feng; L. F. Lu; Q. Sun; G. Ying; D. J. Tang; H. Tang; W. Wu; P. Hao; L. Wang; B. L. Jiang; S. Zeng; W. Y. Gu; G. Lu; L. Rong; Y. Tian; Z. Yao; G. Fu; B. Chen; R. Fang; B. Qiang; Z. Chen; G. P. Zhao; J. L. Tang and C. He. 2005. Comparative and functional genomic analyses of the pathogenicity of phytopathogen Xanthomonas campestris pv. campestris. Genome Res. 15 (6): 757-767.
Russo, D. M.; A. Williams; A. Edwards; D. M. Posadas; C. Finnie; M. Dankert; J. A. Downie and A. Zorreguieta. 2006. Proteins exported via the PrsDPrsE type I secretion system and the acidic exopolysaccharide are involved in biofilm formation by Rhizobium leguminosarum. J. Bacteriol. 188 (12):4474-4486.
Sambrook, J.; E. F. Fritsch and T. Maniatis. 1989. Molecular cloning: a laboratory manual. 2.ª ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, USA.
Scott, C. and S. C. Manning. 2003. Basics of biofilm in clinical otolaryngology. Ear Nose Throat J. 82 (suppl.):18-206.
Sherwood, M. 1970. Improved synthetic medium for the growth of Rhizobium. J. Appl. Bacteriol. 33 (4): 708-713.
Siciliano, F.; P. Torres; L. Sendín; C. Bermejo; P. Filippone; G. Vellicce; J. Ramallo; A. Castagnaro; A. Vojnov and M. R. Marano. 2006. Analysis of the molecular basis of Xanthomonas citri subsp. citri pathogenesis in Citrus limon. Electron. J. Biotechnol. 9 (3): 200-204.
Southey-Pillig, C. J.; D. G. Davies and K. Sauer. 2005. Characterization of temporal protein production in Pseudomonas aeruginosa biofilms. J. Bacteriol. 187 (23): 8114-8126.
Steinberger, R. E. and P. A. Holden. 2005. Extracellular DNA in single and multiple-species unsaturated biofilms. Appl. Environ. Microbiol. 71 (9): 5404-5410.
Stuurman, N.; C. Pacios Bras; H. R. Schlaman; A. H. Wijfjes; G. Bloemberg and H. P. Spaink. 2000. Use of green fluorescent protein color variants expressed on stable broad-host-range vectors to visualize rhizobia interacting with plants. Mol. Plant-Microbe Interact. 13 (11): 1163-1169.
Sutherland, I. 2001. Biofilm exopolysaccharides: a strong and sticky framework. Microbiology 147 (1): 3-9.
Vojnov, A. A.; D. E. Bassi; M. J. Daniels and M. A. Dankert. 2002. Biosynthesis of a substituted cellulose from a mutant strain of Xanthomonas campestris. Carbohydr. Res. 337 (4): 315-326.
Vojnov, A. A.; A. Zorreguieta; J. M. Dow; M. J. Daniels and M. A. Dankert. 1998. Evidence for a role for the gumB and gumC gene products in the formation of xanthan from its pentasaccharide repeating unit by Xanthomonas campestris. Microbiology 144 (6): 1487-1493.
Yun, M. H.; P. S. Torres; M. El Oirdi; L. A. Rigano; R. Gonzalez-Lamothe; M. R. Marano; A. P. Castagnaro; M. A. Dankert; K. Bouaraby and A. A. Vojnov. 2006. Xanthan induces plant susceptibility by suppressing callose deposition. Plant Physiol. 141 (1):178-187.
Downloads
Publicado
Como Citar
Licença
Copyright (c) 2014 Rigano et al.

Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.