Los marcadores moleculares TRAP permiten identificar líneas transgénicas de caña de azúcar (Saccharum spp.) genéticamente similares al genotipo sin transformar

Authors

  • M. Francisca Perera Estación Experimental Agroindustrial Obispo Colombres (EEAOC). Sección Biotecnología.
  • S. Natalia Ovejero Estación Experimental Agroindustrial Obispo Colombres (EEAOC). Sección Biotecnología.
  • Aldo S. Noguera Estación Experimental Agroindustrial Obispo Colombres (EEAOC). Sección Biotecnología.
  • María Inés Cuenya Estación Experimental Agroindustrial Obispo Colombres (EEAOC). Sección Biotecnología.
  • Atilio P. Castagnaro Instituto de Tecnología Agroindustrial del Noroeste Argentino (ITANOA).

Keywords:

marcadores moleculares, transgénesis, genetic transformation, molecular markers, somaclonal variation

Abstract

          Los marcadores moleculares son útiles para determinar la presencia de cambios genéticos durante el proceso de transformación. Entre ellos, los marcadores funcionales distribuidos al azar en todo el genoma pueden reflejar variaciones genéticas de interés directo. Por este motivo, el objetivo de este trabajo fue determinar la similitud con la variedad de caña de azúcar sin transformar de diferentes eventos transgénicos mediante el uso de marcadores TRAP (“Target Region Amplified Polymorphism”). Para ello, ADNs provenientes de los eventos transgénicos, los genotipos sin transformar y de otras variedades de caña de azúcar se caracterizaron mediante amplificación con siete a nueve combinaciones de cebadores TRAP. Los marcadores se separaron mediante electroforesis en geles de poliacrilamida en condiciones desnaturalizantes en el equipo Li-cor DNA Analyzer. Los fragmentos amplificados fueron transformados en matrices binarias de 0/1, utilizadas para calcular el coeficiente de Jaccard y construir árboles de similitud. En primer lugar, los marcadores permitieron confirmar las evaluaciones fenotípicas preliminares de eventos resistentes al herbicida glifosato de la variedad RA 87-3, dado que aquellos eventos fenotípicamente similares a la variedad sin transformar no mostraron cambios genéticos o solo algunos menores, mientras que eventos con aberraciones de crecimiento presentaron un alto nivel de polimorfismo. La incorporación en el análisis de otros genotipos permitió validar internamente la técnica asegurando el análisis de un número significativo de bandas polimórficas. Considerando la precisión de esta metodología, se la aplicó de rutina para caracterizar eventos transgénicos de las variedades LCP 85-384, TUCCP 77-42, TUC 95-10 y TUC 03-12 en las primeras etapas del proceso de evaluación. En conclusión, el uso de marcadores TRAP constituye una estrategia rápida y recomendable para caracterizar e identificar eventos transgénicos genéticamente próximos a su genotipo sin transformar. Esto posibilita la selección en las primeras etapas de evaluación de aquellos eventos más adecuados para realizar los ensayos a campo.

ABSTRACT

TRAP markers allow the identification of sugarcane transgenic lines that are genetically close to their parental genotype

          Molecular markers could be useful to determine the occurrence of genetic changes during the genetic transformation process. Among them, functional markers randomly distributed throughout the genome may reflect genetic variations of direct interest. For this reason, the objective of this work was to determine similarity to parental genotype of sugarcane of different transgenic events by using Target Region Amplified Polymorphism (TRAP) markers. DNAs from transgenic events, wild type genotypes and other sugarcane varieties were characterized by seven to nine combinations of TRAP primers. Molecular markers were separated by electrophoresis on polyacrylamide denaturing gels in a DNA Analyzer (Li-cor). Amplified fragments were transformed into either a 0/1 matrix. Similarity was calculated by using Jaccard coefficient and dendrograms were generated. At first instance, markers confirmed the preliminary phenotypic evaluations of herbicide resistant events of RA 87-3 variety since transformed events with close growth resemblance to its parental variety exhibited none or only minor genetic changes whereas events with growth aberrations showed a significant degree of polymorphism. The incorporation of other genotypes allowed validating the technique assuring that a significant number of polymorphic bands were analyzed. Considering the accuracy of the methodology, it was routinely applied to characterize transgenic events of LCP 85-384, TUCCP 77-42, TUC 95-10 and TUC 03-12 at early stages of the process. In conclusion, the use of TRAP markers is a quick and recommendable strategy to characterize and identify transgenic events genetically close to their parental genotypes. This makes possible the selection at the first stages of evaluation of those of the most valuable events to carry out field tests.

Author Biographies

M. Francisca Perera, Estación Experimental Agroindustrial Obispo Colombres (EEAOC). Sección Biotecnología.

Dra. Lic. Biot. Investigadora Adjunta Conicet. Sección Biotecnología, EEAOC.

S. Natalia Ovejero, Estación Experimental Agroindustrial Obispo Colombres (EEAOC). Sección Biotecnología.

Lic. Biot. Técnica Profesional Principiante A. Sección Biotecnología, EEAOC.

Aldo S. Noguera, Estación Experimental Agroindustrial Obispo Colombres (EEAOC). Sección Biotecnología.

Dr. Ing. Agr. Investigador Asociado B, Jefe de Sección. Sección Biotecnología, EEAOC.

María Inés Cuenya, Estación Experimental Agroindustrial Obispo Colombres (EEAOC). Sección Biotecnología.

Ing. Agr. Investigadora Principal - RU. Sección Caña de Azúcar, EEAOC.

Atilio P. Castagnaro, Instituto de Tecnología Agroindustrial del Noroeste Argentino (ITANOA).

Dr. Ing. Agr. Director Instituto de Tecnología Agroindustrial del Noroeste Argentino (ITANOA).

References

Aljanabi, S.; L. Forget and A. Dookun. 1999. An improve and rapid protocol for the isolation of polysaccharide and polyphenol free sugarcane DNA. Plant Mol. Biol. Report. 17: 281.

Alwala, S.; A. Suman; J. A. Arro; J. C. Veremis and C. A. Kimbeng. 2006. Target region amplification polymorphism (TRAP) for assessing genetic diversity in sugarcane germoplasm collections. Crop Sci. 46:448 - 455.

Caplan, A.; L. Herrera-Estrella; D. Inze; E. Van Haute; M. Van Montagu; J. Schell and P. Zambryski. 1983. Introduction of genetic material into plant cells. Science 222 (4625): 815 - 821.

Di Rienzo, J.; F. Casanoves; M. Balzarini; L. Gonzalez; M. Tablada and C. Robledo. 2009. InfoStat. Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina.

Franz, J. E.; M. K. Mao and J. A. Sikorski. 1997. Glyphosate: A unique global herbicide. American Chemical Society, Washington DC.

Gilbert, R.; N. Glynn; J. Comstock and M. Davis. 2009. Agronomic performance and genetic characterization of sugarcane transformed for resistance to sugarcane yellow leaf virus. Field crops Res. 111: 39 - 46.

Grivet, L.; J. Glaszmann and P. Arruda. 2001. Sequence polymorphism from EST data in sugarcane: a fine analysis of 6-phosphogluconate dehydrogenase genes. Genetics and Molecular Biology 24 (1-4): 161 -167.

Joyce, P.; S. Hermann; A. O’Connell; Q. Dinh; L. Shumbe and P. Lakshmanan. 2014. Field performance of transgenic sugarcane produced using Agrobacterium and biolistics methods. Plant Biotechnol. J. 12: 411 - 424. doi:10.1111/pbi.12148

Li, G. and C. F. Quiros. 2001. Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica. Theor. Appl. Genet. 103 (2–3): 455 - 461.

Padgette, S. R.; N. B. Taylor; D. L. Nida; M. R. Bailey; J. MacDonald; L. R. Holden and R. L. Fuchs. 1996. The composition of glyphosate-tolerant soybean seeds is equivalent to that of Conventional Soybeans. J Nutr. 126 (3): 702-716. DOI:10.1093/jn/126.3.702

OCDE - Organización de Cooperación y Desarrollo Económicos. 1993. Safety evaluation of foods derived by modern biotechnology: Concepts and principles. París, Francia.

Perera, M.; M. Arias; D. Costilla; A. Luque; M. Garcıa; C. D. Romero; J. Racedo; S. Ostengo; M. Filippone; M. Cuenya and A. P. Castagnaro. 2012. Genetic diversity assessment and genotype identification in sugarcane based on DNA markers and morphological traits. Euphytica 185 (3): 491 – 510.

Sneath, P. H. and R. R. Sokal. 1973a. Numerical taxonomy. The principles and practice of numerical classification. W. H. Freeman, San Francisco.

Sneath, P. H. and R. R. Sokal. 1973b. Numerical taxonomy. Theor. Appl. Genet. 93: 613 – 617.

Taparia, Y.; M. Gallo and F. Altpeter. 2012. Comparison of direct and indirect embryogenesis protocols, biolistic gene transfer and selection parameters for efficient genetic transformation of sugarcane. Plant Cell, Tissue and Organ Culture 10.1007/s11240-012-0177.

Taylor, P. W. J.; T. A. Fraser; Ko, H-L. and R. J. Henry. 1995. RAPD analysis of sugarcane during tissue culture. En: Terzi, M.; Cella, R. and A. Falavigna (eds.), Current issues in plant molecular and cellular biology. Kluwer Academic Int., Dordrecht, pp. 241 - 246.

Published

31/08/2020

How to Cite

Perera, M. F., Ovejero, S. N., Noguera, A. S., Cuenya, M. I., & Castagnaro, A. P. (2020). Los marcadores moleculares TRAP permiten identificar líneas transgénicas de caña de azúcar (Saccharum spp.) genéticamente similares al genotipo sin transformar. Revista Industrial Y Agrícola De Tucumán, 97(1), 1–7. Retrieved from https://publicaciones.eeaoc.gob.ar/index.php/riat/article/view/76

Issue

Section

Artículos Científicos

Categories

Most read articles by the same author(s)