Evaluación de la capacidad de una cepa autóctona de Gluconacetobacter sp. para mejorar el crecimiento inicial del cultivo de la caña de azúcar
Palabras clave:
sustentabilidad, cañaveral, fijación biológica de nitrógeno, sustainability, sugarcane field, biológical nitrogen fixationResumen
Los biofertilizantes constituidos por bacterias promotoras del crecimiento vegetal son una alternativa sustentable para estimular el crecimiento e incrementar los rendimientos del cultivo de la caña de azúcar. El objetivo de este trabajo fue aislar y caracterizar una cepa endofítica del género Gluconacetobacter capaz de colonizar y promover el crecimiento del cultivo, y que presente además alta viabilidad y estabilidad en medios de cultivo de bajo costo para su propagación a escala piloto e industrial. A partir de tallos de caña de azúcar, se aisló la cepa endofítica OCG1 de Gluconacetobacter con capacidad potencial para fijar nitrógeno. Luego de inocular yemas aisladas de caña de azúcar de la variedad TUC 95-10, se observó que el aislamiento OCG1 fue capaz de colonizar el sistema radicular de las plántulas e incrementar el peso fresco y seco tanto del sistema aéreo como del radicular. Finalmente, OCG1 presentó capacidad para generar gran cantidad de biomasa y para producir y excretar exopolisacáridos (EPS) en el medio de cultivo industrial utilizado para su propagación a escala piloto. Además, conservó su viabilidad durante el almacenamiento prolongado a temperatura ambiente (25°C).
De esta forma, la cepa Gluconacetobacter OCG1 podría emplearse en la formulación de un biofertilizante para obtener plantines de caña de azúcar con alto valor agregado a partir de la inoculación de las yemas aisladas.
ABSTRACT
Evaluation of an autochthonous strain of Gluconacetobacter sp. ability to improve the initial growth of sugarcane crop
Biofertilizers constituted by plant growth promoting bacteria, are a sustainable alternative to stimulate sugarcane growth and development. The objective of this work was to isolate and characterize an endophytic Gluconacetobacter strain capable of colonizing and promoting crop growth. It also has a high viability and stability in low cost culture medium for its pilot and industrial scale propagation. From sugarcane stems, the endophytic strain GluconacetobacterOCG1 with potential ability to fix nitrogen was isolated. After TUC 95-10 sugarcane buds inoculation, it was observed that OCG1 strain is able to colonize root system and to increase fresh and dry weight of both vegetative and root systems. Finally, OCG1 strain showed high ability to generate large amount of biomass and to produce and excrete exopolysaccharides (EPS) in the industrial culture medium used for the propagation at pilot scale. Also, it retained its viability during long storage at room temperature (25°C).
Hence, Gluconacetobacter OCG1 strain could be used as a biofertilizer to obtain high added value sugar cane seedlings from the inoculation of isolated buds.
Citas
Anhita, K. V. and M. Thangaraju. 2010. Influence of N fertilization on colonization and activity of Gluconacetobacter diazotrophicus in sugarcane. Agro. Crop Sci. 1 (1): 6-11.
Baldani, J.; L. Caruso; V. L. Baldani; S. R. Goi and J. Döbereiner. 1997. Recent advances in BNF with non-legume plants. Soil Biol. Biochem. 29 (5-6): 911-922.
Bastián, F. A.; P. Cohen; V. Piccoli; R. Luna; S. Baraldi and R. Bottini. 1998. Production of indole 3-acetic acid and gibberellins A1 y A3 by Acetobacter diazotrophicus and Herbaspirillum seropedicae in chemically-defined culture media. Plant Growth Regulation. 24: 7-11.
Bellone, C. H.; S. D. V. C. De Bellone; R. O. Pedraza and M. A. Monzon. 1997. Cell colonization and infection thread formation in sugar cane roots by Acetobacter diazotrophicus. Soil Biol. Biochem. 29 (5-6): 965-967.
Casas, M. A.; J. Pérez; D. Piñón; A. Bernal; M. Zardón y J. R. Torres. 2015. Resultados de colonización e interacción del endófito Gluconacetobacter diazotrophicus en vitroplantas de caña de azúcar. Fitosanidad. 19 (2): 101-101.
Cavalcante, V. A. and J. Döbereiner. 1988. A new acid tolerant nitrogen-fixing bacterium associated with sugarcane. Plant Soil. 108: 23-31.
Cojho, E. H., V. M. Reis; A. C. G. Schenberg; J. Döbereiner. 1993. Interactions of Acetobacter diazotrophicus with an amylolytic yeast in nitrogen-free batch culture. FEMS Microbiol. Lett. 106 (3): 341-346.
Da Silva, P. M.; S. M. Tsai and R. Bonetti. 1993. Response to inoculation and N fertilization for increased yield and biological nitrogen fixation of common bean (Phaseolus vulgaris L.). In: Enhancement of Biological Nitrogen Fixation of Common Bean in Latin America. Springer, Dordrecht, 1993, pp. 123-130.
Danese, P. N.; L. A. Pratt and R. Kolter. 2000. Exopolysaccharide production is required for development of Escherichia coli K-12 biofilm architecture. J. Bacteriol. 182 (12): 3593-3596.
Döbereiner, J. 1989. Isolation and identification of root associated diazotrophs. In: Nitrogen fixation with nonlegumes. Springer, Dordrecht, 1989, pp. 103-108.
Döbereiner, J. 1992. Recent changes in concepts of plant bacteria interactions: endophytic N2 fixing bacteria. Ciênc. Cult. 44 (5): 310-313.
Döbereiner, J.; V. M. Reis; M. A. Paula and F. D. Olivares. 1993. Endophytic diazotrophs in sugar cane, cereals and tuber plants. In: New horizons in nitrogen fixation. Springer, Dordrecht, 1993, pp. 671-676.
Döbereiner, J.; V. L. D. Baldani e J. I. Baldani. 1995. Como isolar e identificar bacterias diazotróficas de plantas não-leguminosas. Brasilia-DF: EMBRAPASPI. ISBN 85-85007-65-6.
Dow, M.; M. A. Newman and E. Von Roepenack. 2000. The induction and modulation of plant defense responses by bacterial lipopolysaccharides. Annu. Rev. Phytopathol. 38 (1): 241-261.
Fuentes-Ramírez, L.; T. Jimenez-Salgado; I. R. Abarca-Ocampo and J. Caballero Mellado. 1993. Acetobacter diazotrophicus an índole acetic acid producing bacterium isolated from sugarcane cultivars of Mexico. Plant Soil. 154 (2): 145-150.
Gallon, J. R. 1992. Tansley Review No. 44. Reconciling the incompatible: N2 fixation and O2. New Phytol. 571-609.
Gillis, M.; K. Kersters; B. Hoste; D. Janssens; R. M. Kroppenstedt; M. P. Stephan and J. De Ley. 1989. Acetobacter diazotrophicus sp. nov., a nitrogenfixing acetic acid bacterium associated with sugarcane. Int. J. Syst. Evol. Microbial. 39 (3): 361-364.
Hernández Vargas, M. 2017. Escalamiento y estrategias de co-cultivo para la producción de un inoculante de segunda generación. Tesis de Maestría. Benemérita Universidad Autónoma de Puebla.
Idogawa, N.; R., Amamoto; K. Murata and S. Kawai. 2014. Phosphate enhances levan production in the endophytic bacterium Gluconacetobacter diazotrophicus Pal5. Bioengineered 5 (3): 173-179.
James, E. K.; F. L. Olivares; A. L. de Oliveira; F. B. dos Reis Jr; L. G. da Silva and V. M. Reis. 2001. Further observations on the interaction between sugarcane and Gluconacetobacter diazotrophicus under laboratory and greenhouse conditions. J. Exp. Bot. 52 (357): 747-760.
James, E. K. 2000. Nitrogen fixation in endophytic and associative symbiosis. Field Crops Res. 65: 197-209.
Jaramillo, R. D.; O. Perna; L. E. Ríos y J. Escobar. 2014. Efecto de la melaza de caña tratada con ácido sulfúrico en la producción de celulosa por Gluconacetobacter xylinus IFO 13693. Rev. Colomb. Quim. 43 (2): 25-31.
Jiménez-Salgado, T.; L. E. Fuentes-Ramírez; A. Tapia-Hernández; M. A. Mascarua-Esparza; E. Martínez-Romero and J. Caballero-Mellado. 1997. Coffea arabica L., a new host plant for Acetobacter diazotrophicus, and isolation of other nitrogenfixing acetobacteria. Appl. Envirom. Microbiol. 63(9): 3676-83.
Laue, H.; A. Schenk; H. Li; L. Lambertsen; T. R. Neu; S. Molin and M. S. Ullrich. 2006. Contribution of alginate and levan production to biofilm formation by Pseudomonas syringae. Microbiology 152 (10):2909-2918.
Lima, E.; R. M. Boddey and J. Döbereiner. 1987. Quantification of biological nitrogen fixation associated with sugar cane using a 15N aided nitrogen balance. Soil Biol. Biochem. 19 (2): 165-170.
Malik, S.; M. Beer; M. Megharaj and R. Naidu. 2008. The use of molecular techniques to characterize the microbial communities in contaminated soil and water. Environ. Int. 34 (2): 265-276.
Meneses, C. H.; T. Gonçalves; S. Alquéres; L. Rouws; R. Serrato; M. Vidal and J. I. Baldani. 2017. Gluconacetobacter diazotrophicus exopolysaccharide protects bacterial cells against oxidative stress in vitro and during rice plant colonization. Plant Soil 416 (1-2): 133-147.
Meneses, C. H.; L. F. Rouws; J. L. Simões-Araújo; M. S. Vidal and J. I. Baldani. 2011. Exopolysaccharide production is required for biofilm formation and plant colonization by the nitrogen-fixing endophyte Gluconacetobacter diazotrophicus. Mol. Plant Microbe. Interact. 24 (12): 1448-1458.
Morales-García, Y. E.; D. Juárez-Hernández; A. L. Hernández-Tenorio; J. M. Muñoz-Morales; A. Baez y J. Muñoz-Rojas. 2020. Inoculante de segunda generación para incrementar el crecimiento y salud de plantas de jardín. Revista Alianzas y Tendencias BUAP (AyTBUAP). 5 (20): 136-154.
Muñoz-Rojas, J. and J. Caballero-Mellado. 2003. Population dynamics of Gluconacetobacter diazotrophicus in sugarcane cultivars and its effects on plant growth. Microb. Ecol. 46: 454-464.
Muthukumarasamy, R.; G. Revathi; S. Seshadri and C. Lakshminarasimhan. 2002. Gluconacetobacter diazotrophicus (syn. Acetobacter diazotrophicus), a promising diazotrophic endophyte in tropics. Curr. Sci. 137-145.
Patriquin, D. G.; L. A. Gracioli and A. P. Ruschel. 1980. Nitrogenase activity of sugar cane propagated from stem cuttings in sterile vermiculite. Soil Biol. Biochem. 12 (4): 413-417.
Patriquin, D. G.; J. Döbereiner and D. K Jain. 1983. Sites and processes of association between diazotrophs and grasses. Can. J. Microbiol. 29 (8): 900-915.
Potrich, D. P.; L. M. P. Passaglia and I. S. Schrank. 2001. Partial characterization of nif genes from the bacterium Azospirillum amazonense. Braz. J. Med. Biol. Res. 34 (9): 1105-1113.
Rayle, D. and R. Cleland. 1992. The acid growth theory of auxin-induced cell elongation is alive and well. Plant Physiol. 99: 1271-1274.
Rinaudi, L. V. and W. Giordano. 2010. An integrated view of biofilm formation in rhizobia. FEMS Microbiol. Lett. 304 (1): 1-11.
Romero, E. R.; L. G. Alonso; S. Casen; M. F. Leggio Neme; J. Tonatto; J. Scandaliaris; P. A. Digonzelli; J. Giardina y J. Fernandez de Ullivarri. 2009. Fertilización de la caña de azúcar: criterios y recomendaciones. En: Romero, E. R.; J. Scandaliaris y P. Digonzelli (eds.), Manual del cañero, EEAOC, Tucumán, R. Argentina, pp. 75-84.
Ruschel, A. P.; Y. Henis and E. Salati. 1975. Nitrogen-15 tracing of N-fixation with soil-grown sugarcane seedlings. Soil Biol. Biochem. 7: 181-182.
Russo, D. M.; A. Williams; A. Edwards; D. M. Posadas; C. Finnie; M. Dankert and A. Zorreguieta. 2006. Proteins exported via the PrsD-PrsE type I secretion system and the acidic exopolysaccharide are involved in biofilm formation by Rhizobium leguminosarum. J. Bacteriol. 188 (12): 4474-4486.
Saharan, B. S. and V. Nehra. 2011. Plant Growth Promoting Rhizobacteria: A Critical Review. LSMR. 21:1-30.
Sevilla, M.; A. De Oliveira; I. Baldani and C. Kennedy. 1998. Contributions of the bacterial endophyte Acetobacter diazotrophicus to sugarcane nutrition. A preliminary study. Symbiosis 25: 181-191.
Sklarz, M. Y.; R. Angel; O. Gillor and M. I. M. Soares. 2009. Evaluating amplified rDNA restriction analysis assay for identification of bacterial communities. Antonie Van Leeuwenhoek 96 (4): 659.
Stephan, M. P.; M.Oliveira; K. R. S. Teixeira; G. Martinez-Drets and J. Döbereiner. 1991. Physiology and dinitrogen fixation of Acetobacter diazotrophicus. FEMS Microbiol. Lett. 77 (1): 67-72.
Urquiaga, S.; K. H. Cruz and R. M. Boddey. 1992. Contribution of nitrogen fixation to sugarcane: nitrogen-15 and nitrogen-balance estimates. Soil Sci. Soc. Am. J. 56 (1): 105-114.
Descargas
Publicado
Cómo citar
Licencia
Derechos de autor 2022 María L. Tórtora et al.
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.