

Revista Industrial y Agrícola de Tucumán

ISSN 0370-5404

En línea 1851-3018

Tomo 102 (2): 28-33; 2025

ESTACION EXPERIMENTAL AGROINDUSTRIAL OBISPO COLOMBRES Tucumán I Argentina

Av. William Cross 3150 T4101XAC - Las Talitas. Tucumán, Argentina.

Paper presentado en el XXXII ISSCT Centennial Congress, 24 al 28 de agosto de 2025, Cali, Colombia, traducido al castellano.

Fecha de recepción: 26/09/2025

Fecha de aceptación: 29/09/2025

Gasificación de residuos de cosecha como alternativa energética sostenible en la industria sucroalcoholera de Tucumán, Argentina

Federico J. Franck Colombres*,**, Enrique A. Feijoó*, L. Patricia Garolera de Nucci*, Gisela F. Díaz* y Marta C. Cruz*

* Sección Ingeniería y Proyectos Agroindustriales – Estación Experimental Agroindustrial Obispo Colombres, Tucumán, Argentina; **Departamento de Mecánica – Universidad Nacional de Tucumán, Av. Independencia 1800, S. M. de Tucumán, Tucumán, Argentina. Email: federicofranck@gmail.com

RESUMEN

En Tucumán, el bioetanol se produce principalmente en destilerías anexas a centrales azucareras que consumen energía térmica y eléctrica, proveniente en gran medida del bagazo generado, lo que contribuye a la sostenibilidad de su proceso. Sin embargo, también se utilizan combustibles fósiles para cubrir sus necesidades energéticas. El objetivo de este trabajo fue estudiar el uso de residuos agrícolas de la cosecha de la caña de azúcar mediante el proceso de gasificación con aire, para reducir el consumo de combustibles fósiles. Se propuso un esquema de utilización y una tecnología de gasificación adecuada; se determinaron los flujos para el balance de materia y energía; y se propuso un modelo matemático. Se estimó el desempeño del gas de gasificación en una caldera de gas natural mediante un análisis comparativo basado en un ensayo con gas natural. Se determinó la eficiencia de la caldera utilizando gas de gasificación, su consumo para sustituir el gas natural y la cantidad de residuos de cosecha necesarios para alimentar el gasificador. Dada la naturaleza biogénica del carbono de los residuos de cosecha, se estimaron las emisiones evitadas de gases de efecto invernadero como la diferencia entre las emisiones de la combustión del gas natural y las de la combustión del diésel consumido en la logística de los residuos de cosecha. Los resultados muestran que para eliminar el gas natural se necesitarían 14 kg de gas de gasificación por kg de gas natural y se obtendrían 2,763 kg de gas de gasificación por kg de residuo de cosecha, es decir, 5,07 kg de residuo de cosecha por kg de gas natural. Mediante la tecnología de gasificación, parte de los residuos de cosecha podrían utilizarse para sustituir completamente el gas natural y reducir las emisiones de CO₂ en un 94%.

Palabras clave: bioenergía, biocombustible, energía limpia, residuos agrícolas, proceso termoquímico.

ABSTRACT

Gasification of harvest residues as a sustainable energy alternative in the sugarcane agroindustry of Tucumán, Argentina

In Tucumán, bioethanol is produced mainly from distilleries annexed to sugarcane plants that consume thermal and electrical energy supplied largely from the bagasse generated, which contributes to the sustainability of their process. However, additional fossil fuels are also used in the process to supply their energy requirements. The objective of this work was to study the use of agricultural residues from sugarcane harvests, using gasification process with air, to reduce fossil-fuel consumption. A utilization scheme and an appropriate gasification technology were proposed, the flows were determined for the material and energy balance, and a mathematical model proposed. The performance that the gasification gas shows in a natural gas boiler was estimated through a comparative

analysis based on a test with natural gas. The efficiency of the boiler using gasification gas, its consumption to replace natural gas and the amount of harvest residues necessary to feed the gasifier were determined. Given the biogenic carbon of the harvest residues, avoided greenhouse gas emissions were estimated as the difference of the emissions from natural gas combustion with those from the combustion of diesel consumed in the logistics of the harvest residues. The result shows that to eliminate natural gas 14 kg of gasification gas/kg of natural gas would be needed and 2.763 kg of gasification gas/kg of harvest residue would be obtained, that is, 5.07 kg of harvest residue/kg of natural gas. Through gasification technology, part of the harvest residues could be used to replace natural gas entirely and reduce CO₂ emissions by 94%.

Key words: bioenergy, biofuel, clean energy, agricultural residue, thermochemical process.

■ INTRODUCCIÓN

El sector azucarero es la principal actividad agroindustrial de Tucumán, con 294.470 ha dedicadas al cultivo, 14 ingenios azucareros y 10 destilerías anexas. Estas plantas industriales requieren energía térmica y eléctrica, que se obtiene principalmente del bagazo, pero también de combustibles fósiles, gas natural (GN) o fueloil. El residuo agrícola de la cosecha de la caña (RAC) se emplea como cobertura del suelo, pero quedan aún remanentes sin aprovechar. Mediante una tecnología adecuada, estos podrían emplearse para abastecimiento de energía de la industria sucroalcoholera. Los sistemas más difundidos para aprovechamiento energético de biomasas similares al RAC emplean tecnologías de combustión; sin embargo, el RAC tiene características particulares, principalmente en cuanto a la baja temperatura de fusión de cenizas, que complican dicho proceso. La gasificación se presenta como una alternativa, ya que se realiza a temperaturas más bajas que la combustión. Además, mediante gasificación se pueden lograr eficiencias mayores, y podría emplearse también con bagazo. El objetivo de este trabajo es evaluar el aprovechamiento del RAC para abastecimiento energético de una planta sucroalcoholera tipo de Tucumán mediante gasificación.

MATERIALES Y MÉTODOS

Cuantificación, valoración y logística de la biomasa

En Tucumán se estima una generación de RAC de 150 kg base seca por TC (tonelada de caña) y se recomienda extraer entre el 30% y 70% en función de las condiciones agroecológicas, con una media del 50% (Casen et al., 2019). La humedad del RAC al momento de la cosecha (40-50%) es alta para gasificación, pero con secado natural a campo, de entre 10 y 15 días, puede llegar a valores del 15% (Aso et al., 2008), humedad con la cual la biomasa es apta para ser gasificada. En base a Feijóo (2018), se propone el esquema de logística del RAC de la Figura 1, con un consumo de gasoil de 11,24 l/t RAC y

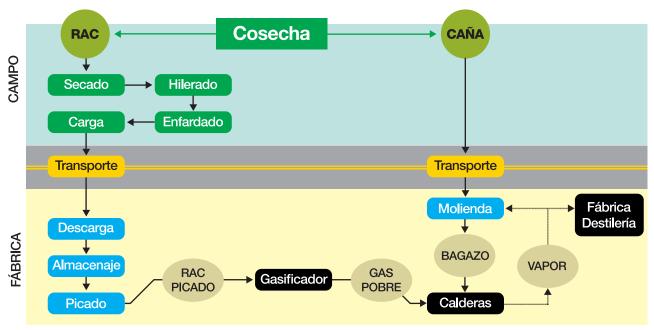


Figura 1. Logística del RAC para su aprovechamiento energético.

2,65 kg CO₂/I de gasoil.

Caso base

Tucumán cuenta con 10 destilerías anexas a ingenios azucareros, con diferentes capacidades y esquemas productivos, que emplean como materia prima para la producción de etanol fluidos azucarados de distintas procedencias y proporciones, con lo cual varían las cantidades relativas de azúcar y alcohol producidas, así como el consumo energético del proceso. Un proceso que maximice la cantidad de azúcar a obtener consume relativamente menos vapor (Diez et al., 2019); por ello, se asumió una planta hipotética que emplee todo el jugo de la caña para producir azúcar blanco directo, produzca alcohol con la miel final y concentre la vinaza (Tabla 1).

Tabla 1. Datos de entrada para la resolución de los balances.

zafra (producción de azúcar y alcohol)	150	días
interzafra (producción sólo de alcohol)	180	días
molienda	10.000	t/día
humedad bagazo	51,4	%caña
jugo	100	%caña
azúcar	10,79	%caña
melaza	4,58	%caña
vapor escape	55	%caña
alcohol total producido	12,3	I/TC
consumo de vapor en destilería	4,5	kg vapor/l de alcohol
consumo de vapor en deshidratadora	2,5	kg vapor/l de alcohol
vinaza cruda	11	I vinaza/I alcohol
concentración vinaza cruda	10	Bx
concentración vinaza concentrada	35	Bx
vapor en concentración de vinaza	0,35	kg vapor/l vinaza
temperatura (t) del vapor	320	°C
presión (p) del vapor	21	bar
temperatura del agua alimentación	95	°C
rendimiento calderas a bagazo (η _в)	62	%
rendimiento calderas a GN (η _{GN})	76,3	%

Balances de materia y energía del caso base

A partir de los datos de Tabla 1, se determinó la molienda anual, la producción de azúcar y melaza, así como la capacidad de almacenamiento de melaza requerida y la capacidad de producción de etanol necesarias para la destilería, considerando que opera a plena carga, en forma constante, tanto en zafra como en interzafra.

Se determinó la cantidad de bagazo (B) generado con la molienda, y con ella, teniendo en cuenta el rendimiento de calderas (η_R) , el poder calorífico inferior (PCI) y entalpías (h) del vapor (h,) y del agua (h,), se determinó la cantidad de vapor (V) generada a partir del mismo (V_R) mediante Ec. 1.

Se determinó el vapor en zafra y, a continuación, se calculó la cantidad de vapor generado con GN durante zafra (V₇) como la diferencia entre el vapor total en zafra y el V_B. Con la Ec. 2 se determinó la cantidad de GN consumida en zafra (GN₂).

$$V_{_{B}} = \frac{\eta_{_{B}} \,.\, B \,.\, PCI_{_{B}}}{(h_{_{_{\boldsymbol{v}}}} - h_{_{a}})}$$

Ecuación 2
$$GN_Z = \frac{V_Z \cdot (h_v - h_a)}{\eta_{GN} \cdot PCI_{GN}}$$

De igual manera se determinaron los consumos de vapor y GN en interzafra (V,, GN,).

Los caudales másicos se expresaron en kg/h y las entalpías y poderes caloríficos en kJ/kg.

Aprovechamiento del gas de gasificación

Se propone la combustión del gas de gasificación, en primera instancia para la generación de energía térmica únicamente, y se adopta un gasificador con aire. Así, el gas generado resulta un gas pobre (GP), de relativamente bajo poder calorífico, que podría aprovecharse de distintas maneras: caliente, como sale del gasificador, o limpio y frío; en calderas existentes o en instalaciones nuevas diseñadas para tal fin; como único combustible, o en combinación con bagazo u otros combustibles. Podrían también considerarse combinaciones de estas alternativas. En este caso, se analizó a modo de ejemplo la alternativa de usar GP caliente en una caldera existente de GN.

La selección del tipo específico de gasificador dependerá de múltiples factores (Franck Colombres, 2017). En este caso, aunque los requerimientos del gas no serían muy exigentes debido al uso propuesto del GP mediante combustión, se seleccionó un gasificador de lecho fluidizado, ya que se trata de un proceso continuo y permitiría, a futuro, realizar mejoras para la generación de energía adicional en un sistema integrado con turbina de gas.

Gasificación de la biomasa residual

El desempeño de los gasificadores se evaluó en este caso mediante la eficiencia de gas caliente (η_z), relación entre la energía del GP (E_{GP}), obtenida con el PCI del GP (PCI_G) más su entalpía (h_{GP}), y la energía entregada con el PCI del combustible (PCI RAC), despreciando la energía de equipos auxiliares, según Ec. 3 y 4 (donde cp: calor específico, r: referencia).

Ecuación 3
$$\eta_{C} = \frac{GP \cdot (PCI_{GP} + h_{GP})}{RAC \cdot PCI_{RAC}}$$
 Ecuación 4
$$h_{GP} = cp_{GP} \cdot (t_{GP} - t_r)$$

Ecuación 3

Para estimar la eficiencia de gasificación, primero se obtuvo la composición de los gases que abandonan el reactor a partir del planteo y la resolución de un modelo de equilibrio termodinámico. Se asumió una base de 1 kg/h de RAC y se plantearon los balances de materia, asumiendo una conversión del carbono del 85%, temperatura de reacción de 850°C y sistema adiabático. Suponiendo que los gases resultantes están conformados únicamente por CO₂, CO, CH₄, H₂, N₂ y H₂O, se determinó la composición

resultante considerando las constantes de equilibrio $\rm K_1$ y $\rm K_2$, las cuales fueron obtenidas de Rodríguez *et al.* (2010). Se conformó así un sistema de nueve ecuaciones con nueve incógnitas (factor de aire y caudal, PCI y contenido de $\rm CO_2$, $\rm CO$, $\rm CH_4$, $\rm H_2$, $\rm N_2$ y $\rm H_2O$ del GP), que se resolvió empleando el método de optimización lineal sujeto a múltiples restricciones.

_____ Combustión del gas pobre en una caldera de gas natural

Para evaluar la posibilidad y eficiencia de combustión del GP en una caldera, se realizó un análisis comparativo a partir del ensayo de una caldera de GN, manteniendo el volumen de gases reales en la cámara de combustión. Para ello se determinaron, en primer lugar, las pérdidas porcentuales por radiación, convección e indeterminadas de la caldera con GN a partir del método indirecto y, manteniendo dichas pérdidas, se estimó luego el rendimiento con el GP. Se asumió para la combustión del GP un factor de dilución de 1,10. Empleando el método de Broido (Wohlenberg and Mullikin, 1935), se obtuvo la eficiencia de la radiación en cada caso; con ello se determinó el calor transferido por radiación en la cámara de combustión, así como la entalpía y la temperatura de los gases remanentes en la combustión de GP. Manteniendo los coeficientes de transferencia de calor en el sobrecalentador y el haz convectivo, se calculó la temperatura final de los gases y nuevamente, por el método indirecto, se calculó el rendimiento de la caldera.

La mencionada caldera es de tipo acuotubular compacta a GN de 450 m² de superficie, con una producción nominal de 48 t/h a 1765 kPa(a) y 320°C. Durante los ensayos, la caldera produjo 22,2 t/h de vapor de 1716 kPa(a) y 316,9°C. Se registró 1,8% de $\rm O_2$ en los gases en base seca. La temperatura del agua de alimentación fue de 106,8°C; la del aire, de 35,9°C; y la temperatura final de los gases, de 316,9°C.

___ Balance global

Con el rendimiento de la caldera con GP $(\eta_{_{GP}})$ y la $E_{_{GP}}$ se calculó el equivalente GP-GN $(Eq_{_{GP-GN}})$ según Ec. 5. Con la relación GP/RAC, se determinó el requerimiento de RAC.

Emisiones de dióxido de carbono

Para estimar la reducción potencial de gases de

Ecuación 5
$$Eq_{_{GP\text{-}GN}} = \frac{PCI_{_{GN}}.~\eta_{_{GN}}}{E_{_{GN}}.~\eta_{_{Gpc}}}$$

efecto invernadero (GEI) se calculó el ${\rm CO_2}$ liberado en la logística del RAC y se lo comparó con el producido por la combustión del GN.

■ RESULTADOS Y DISCUSIÓN

_____ Balances del caso base

Las Figuras 2 y 3 representan los resultados de los balances para el caso base, en los períodos de zafra e interzafra, respectivamente. El ingenio tipo por día muele

10.000 TC, produce 1079 t de azúcar y 458 t de melaza, de las cuales 250 almacena para interzafra y 208 emplea para la producción de 56 m³/día de etanol, que se deshidratan para obtener 53 m³/día de bioetanol. Por año muele 1.500.000 TC, produce 161.850 t de azúcar, 17,6 millones de litros de bioetanol, consume 19,2 millones de Nm³ de GN, y se dejan en el campo 264.706 t de RAC (considerado al 15% de humedad).

Gasificación del RAC con el modelo propuesto En la Figura 4 se presentan los resultados para la sificación. Se requieren 1,912 kg de aire por kg de RAC,

gasificación. Se requieren 1,912 kg de aire por kg de RAC, con el cual se obtienen 2,763 kg de GP por kg de RAC con un PCI de 2057 kJ/kg.

_____ Combustión de gas pobre en la caldera de gas natural

Con GN, se obtuvo 76,28% de eficiencia, con pérdidas del 13,18% por calor sensible, de 0,05% por combustión incompleta (CO), y de 10,49% por radiación, convección e indeterminadas. La eficiencia de la radiación fue 51,69%. El coeficiente de transferencia del haz convectivo fue de 250 kJ/m² °C; la temperatura de gases a la salida del hogar, de 973°C; y la temperatura media del hogar, de 1341°C. Para GP la pérdida por calor sensible fue de 14,85%; la eficiencia de radiación, de 51,26%; y la eficiencia de la caldera, de 74,67%. La temperatura a la salida del hogar fue de 939°C; y la temperatura media del hogar, de 1286°C. En comparación con la operación con GN, la capacidad de producción de vapor aumentaría un 3% con GP. La temperatura del vapor sobrecalentado sería 2% menor, por lo que podría llegar a ser necesario modificar los sobrecalentadores y revisar la operación de los atemperadores. El caudal de aire de combustión disminuiría 44%, y el de gases efluentes aumentaría 7%, con lo cual los ventiladores de tiro forzado e inducido deberían ser regulados o modificados para las nuevas condiciones. Los quemadores de GP deberían operar con caudales volumétricos de mezcla (gas-aire) a condiciones reales, alrededor de 150% mayores que para GN, por lo que deberían ser más grandes que los de GN o emplearse más quemadores.

☐ Requerimientos de RAC

Se requiere recolectar durante zafra 520 t/día de RAC, 234 t/día necesarias para reemplazar 46 t/día (57.727 Nm³/día) de GN consumido en zafra, y 286 t/día a almacenar para interzafra, las que se usarían a razón de 238 t/día para reemplazar las 47 t/día (58.690 Nm³/día) de GN consumido en interzafra.

El RAC recolectado en zafra (520 t/día) representa un 29% del correspondiente a la caña molida (1765 t/día), es decir que, aun habiendo asumido valores conservadores, habría suficiente RAC para la propuesta en cualquier región de la provincia; y quedarían aun excedentes para otros usos, considerando los porcentajes de recolección recomendados.

Equivalente GP-GN

Para eliminar el GN, se necesitan 14 kg de GP/kg de GN. Con una producción de 2,763 kg de GP/kg de RAC, se requerirían 5,07 kg de RAC/kg de GN.

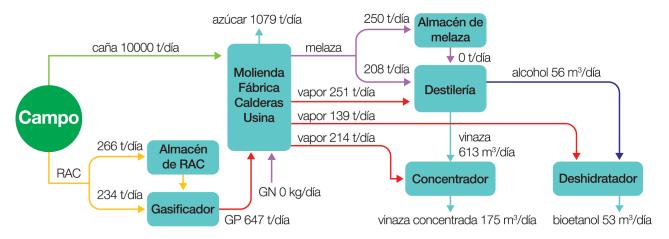


Figura 2. Balances para el caso base durante el período de zafra.

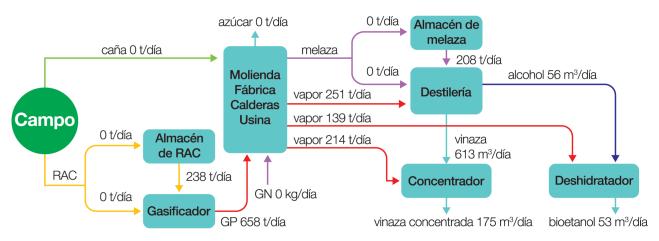


Figura 3. Balances para el caso base durante interzafra.

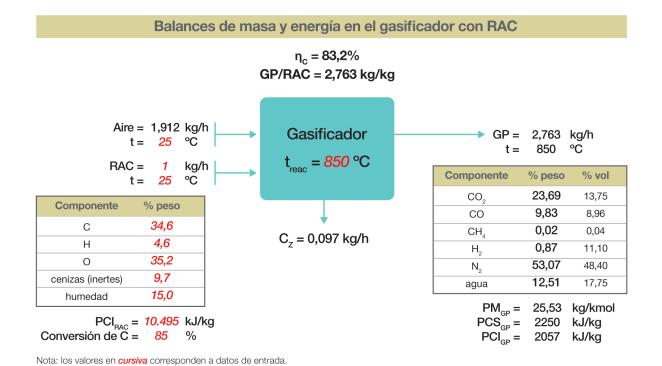


Figura 4. Resultados de balances para la gasificación de RAC.

Reducción de gases de efecto invernadero

La combustión de cada kg de GN produce 2,65 kg CO_2 , lo que equivale a 40.782 kg de CO_2 emitidos al año. El CO_2 producido por la combustión del gasoil en la logística del RAC es de 29,79 kg CO_2 /t RAC, con lo cual la logística del RAC representaría anualmente 2322 kg CO_2 . Esto significa que se podría lograr una reducción de 38.460 kg de CO_2 por año, que representa una reducción del 94,3% respecto a la combustión de GN.

CONCLUSIONES

Una planta sucroalcoholera tipo de Tucumán, de 10.000 TC/día de capacidad, anualmente muele 1.500.000 TC; produce 161.850 t de azúcar y 17,6 millones de litros de bioetanol; consume 19,2 millones de Nm3 de GN y deja 264.706 t de RAC en el campo, del cual podría extraerse entre un 30% y 70%, según la región agroecológica. La gasificación podría emplearse para reemplazar el consumo de GN. Empleando en calderas GP caliente generado en gasificadores de lecho fluidizado con aire, se requerirían 77.935 t de RAC al año, que representan un 29% del RAC correspondiente a la respectiva caña molida, por lo que aún quedaría una fracción de RAC disponible para otros usos. La cantidad de CO, producido por la combustión del gasoil en la logística del RAC es de 2,3 t de CO₂/ año, mientras que la emitida con gas natural en calderas es de 41 t de CO₂/año, es decir, una reducción de GEI del 94,3%.

■ BIBLIOGRAFÍA CITADA

- Aso, G.; E. A. Feijóo; S. M. Sosa y Dora Paz. 2008. Residuos agrícolas de la cosecha en verde de la caña de azúcar. Experiencias de secado natural en el campo. Avance Agroind. 29 (1): 19-22.
- Casen, S. D.; E. A. Feijóo; C. A. Gómez et al. 2019. Sugarcane trash bale pallets in two locations in the province of Tucumán: energetic and structural characterization. Proceedings of the International Society of Sugar Cane Technologists 30: 1625-1636.
- Diez, O. A.; M. N. Russo; R. A. Salazar y R. M. Ruiz. 2019. Producción simultánea de azúcar y alcohol: optimización energética incluyendo concentración de vinaza. Revista Industrial y Agrícola de Tucumán 96 (1): 35-41.
- Feijóo, E. A. 2018. Análisis de diferentes opciones logísticas para el uso de residuos agrícolas de la caña de azúcar con fines energéticos en Tucumán. Tesis Especialización en Ingeniería Bioenergética. Universidad Tecnológica Nacional.
- Franck Colombres, F. J. 2017. La gasificación como alternativa para generación distribuida de energía eléctrica a partir de biomasas residuales de Tucumán. Tesis Especialización en Ingeniería Bioenergética. Universidad Tecnológica Nacional.
- Rodríguez, A. D.; A. Zaleta Aguilar; A. Olivares Arriaga y F. F. Torres Chimal. 2010. Análisis y diseño de un sistema de gasificación de biomasa. Memorias del XVI congreso internacional anual de la SOMIM, México.
- Wohlenberg, W. J. and H. F. Mullikin. 1935. Review of methods of computing heat absorption in boiler furnaces. Transactions of the American Society of Mechanical Engineers 57: 531-540.